↓ Skip to main content

MDPI

A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

Overview of attention for article published in International Journal of Molecular Sciences, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
18 X users
facebook
1 Facebook page

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
95 Mendeley
Title
A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces
Published in
International Journal of Molecular Sciences, July 2016
DOI 10.3390/ijms17081215
Pubmed ID
Authors

Rita Melo, Robert Fieldhouse, André Melo, João D. G. Correia, Maria Natália D. S. Cordeiro, Zeynep H. Gümüş, Joaquim Costa, Alexandre M. J. J. Bonvin, Irina S. Moreira

Abstract

Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 95 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 95 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 22 23%
Researcher 19 20%
Student > Bachelor 13 14%
Student > Ph. D. Student 9 9%
Student > Doctoral Student 5 5%
Other 15 16%
Unknown 12 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 31%
Chemistry 14 15%
Agricultural and Biological Sciences 10 11%
Computer Science 9 9%
Engineering 8 8%
Other 12 13%
Unknown 13 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2017.
All research outputs
#3,108,438
of 25,374,647 outputs
Outputs from International Journal of Molecular Sciences
#3,420
of 44,335 outputs
Outputs of similar age
#54,523
of 379,940 outputs
Outputs of similar age from International Journal of Molecular Sciences
#35
of 423 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 44,335 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 379,940 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 423 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.